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A B S T R A C T

The prediction of Mild Cognitive Impairment (MCI) patients who are at higher risk converting to Alzheimer's
Disease (AD) is critical for effective intervention and patient selection in clinical trials. Different biomarkers
including neuroimaging have been developed to serve the purpose. With extensive methodology development
efforts on neuroimaging, an emerging field is deep learning research. One great challenge facing deep learning is
the limited medical imaging data available. To address the issue, researchers explore the use of transfer learning
to extend the applicability of deep models on neuroimaging research for AD diagnosis and prognosis. Existing
transfer learning models mostly focus on transferring the features from the pre-training into the fine-tuning
stage. Recognizing the advantages of the knowledge gained during the pre-training, we propose an AD-NET
(Age-adjust neural network) with the pre-training model serving two purposes: extracting and transferring
features; and obtaining and transferring knowledge. Specifically, the knowledge being transferred in this re-
search is an age-related surrogate biomarker. To evaluate the effectiveness of the proposed approach, AD-NET is
compared with 8 classification models from literature using the same public neuroimaging dataset. Experimental
results show that the proposed AD-NET outperforms the competing models in predicting the MCI patients at risk
for conversion to the AD stage.

1. Introduction

Alzheimer’s disease (AD) is one of the most common progressive
neurodegenerative diseases in elderly patients. Over 5.5 million
Americans presently suffer from AD, and the number is expected to
increase to 16 million by 2050 with projected healthcare costs reaching
$1.2 trillion (Alzheimer's Association, 2016). AD is characterized by a
long preclinical stage with the slow progression of AD related pathol-
ogies without clinical symptoms, while substantial neuronal loss has
already happened when cognitive changes can be detected (Long and
Holtzman, 2019). Early detection is critical for AD because it is com-
monly believed that this is when the intervention can be more effective

before irreversible brain damage occurs (Frost et al., 2013). Thus, Mild
Cognitive Impairment (MCI), a pre-dementia stage, has been of great
interest in both AD research and clinical practices. MCI is the stage
when the individual has greater cognitive decline than expected from
normal aging but has not shown noticeable interruptions from the daily
activities (Selkoe, 1997). Studies show that MCI patients with memory
complaints and deficits (amnestic mild cognitive impairment) have a
higher risk of progression to AD (Gauthier et al., 2006). The ability to
identify patients who will have faster cognitive decline and are at a
higher risk of converting to clinical AD will facilitate the development
of effective treatments by optimizing cohort selection, and allow better
management of the disease (Aisen et al., 2011). This is a non-trivial
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task. Fortunately, recent studies have demonstrated that neuroimages
can more sensitively and consistently measure disease progression than
cognitive assessment (Li et al., 2018). Imaging biomarkers as the ob-
jective and quantitative criteria have been intensively studied as po-
tential means for AD early detection.

Most research on AD imaging biomarkers focuses on discovering the
features directly measured from the images such as structural Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), and
resting-state functional MRI (fMRI) (Fox et al., 2000; Chupin et al.,
2009; Eskildsen et al., 2013; Filippi et al., 2012; Pike et al., 2007; Li
et al., 2015; Yamada et al., 2017). Biomarker discovery requires joint
efforts from predictive modeling and medicine domain knowledge.
Earlier works on modeling have been mainly related to machine
learning pipeline, where feature extraction and selection are usually the
first steps (Hu et al., 2016; Hojjati et al., 2017; Westman et al., 2012;
Young et al., 2013; Ye et al., 2012). Most recently, deep learning is
introduced to AD research. Deep Neural Network (DNN) model has
been successfully implemented in the broad computer vision domains
for decades (LeCun et al., 1998; LeCun et al., 2015). Related to AD,
most efforts are to take the deep learning model as a feature extractor
where generic (low-level) and/or problem-specific (high-level) features
are extracted from layer to layer. The earlier layers of a deep model
contain more generic features that could be used for many domains and
the features from later layers are more domain-specific (Nogueira et al.,
2017). The features are used in different machine learning models for
AD diagnosis (Suk and Shen, 2013; Shi et al., 2017; Suk et al., 2014).
Other than implementing different machine learning models, re-
searchers further expanded the deep model with one last layer as a
classifier for AD diagnosis. For example, Basaia et al. (2019) built a
simplified Convolutional Neural Network (CNN) without the need for
an activation layer for AD diagnosis. Spasov et al. (2019) designed a
parameters-efficient multi-task CNN model for increased general-
izability to predict MCI-Converter. Lee et al. (2019) applied a Recurrent
Neural Network (RNN), to learn from multi-source data to identify the
person with a higher risk of developing AD.

While deep learning opens great opportunities in medical imaging
research, its potential is compromised by the limited data available in
medicine. Unlike natural images, medical images are rarely available in
large quantities. As a result, overfitting is a major obstacle facing the
deep learning research community (Srivastava et al., 2014; Lever et al.,
2016). One solution to this challenge entails transfer learning (effec-
tively extending knowledge previously learned in one situation to new
situations) to implement in deep learning models. In general, deep
learning uses transfer learning in the following way: the model is pre-
trained on a large labeled dataset (e.g., natural images) to capture the
features from images. Then, the model is fine-tuned on the targeted
image dataset to extract specific features related to medical images.
Therefore, the earliest attempts take a network model as two parts: (1)
the first N layers are for high-level feature extraction, and (2) the last
layer is a classifier. We categorize them as “N + 1” models. The whole
network (N + 1) is pre-trained on the source domain. In the fine-tuning
procedure, the last layer is replaced with the appropriate classification
structure tied to the target problem (Hon and Khan, 2017; Hosseini-Asl
et al., 2016). In case they differ greatly, researchers decide to further
divide the first N layers into (1) first few layers for low-level feature
exaction; (2) middle layers for high-level feature extraction. The pre-
training is still conducted on the whole network model, fine-tuning on
the target domain would involve the middle and last layer of the net-
work (Cheng et al., 2017; Lu et al., 2018). The research reviewed above
takes pre-training and fine-tuning as two independent procedures. La-
tely, researchers start to explore integrating not only the feature ex-
tracted from the pre-training but additional features from different
sources, into the fine-tuning procedure for improved performance. Liu
et al. (2017) fused the features extracted from a pre-trained VGG model
with several texture features into a feature pool. Zhang et al. (2017)
combined the features extracted from the pre-trained CNN model with

handcrafted visual features to classify the type of different medical
images (e.g., MRI, CT). Song et al. (2017) generated the Fisher Vector
(FV) descriptors integrating the features from the DBN model, the CNN
model in an unsupervised manner.

Please note that most existing efforts on transfer learning focus on
extracting and transferring features from the pre-training procedure.
The outcome (a.k.a. knowledge) from the pre-training process is thus
ignored. Here we hypothesize that transferring knowledge from the pre-
training to the fine-tuning may benefit the target problem-solving. The
knowledge of particular interest in this research is related to a new AD
surrogate biomarker (Cole et al., 2017). In Cole et al. (2017), the re-
searchers trained a deep learning model on MRI neuroimages from
cognitively normal subjects to predict each subject’s biological age (B-
Age). The trained model was then used to predict the B-Ages for the
subjects with brain disease. Under the assumption that B-Age shall align
well with chronological age (C-Age) for healthy subjects and the B-Age
and C-Age for individuals with brain diseases shall present notable
differences, the difference (termed Δage) was used to detect group dif-
ferences between diseased cohort vs. cognitively normal cohort (Cole
et al., 2017). Motivated by this initial success from Δage, we are inter-
ested in exploring the predictive power of this surrogate marker in
classifying MCI converter vs. non-converter on an individual base.
Specifically, we propose a new deep learning model named Age-adjust
neural network (AD-NET). In the AD-NET, we revisit the transfer
learning and propose dual purposes from the pre-trained model: (1)
feature transferring: similar to existing research from literature, the pre-
trained model without the last layer is used as feature extractor; (2)
knowledge transferring: the whole pre-trained model is kept into the
fine-tuning stage to transfer the knowledge captured in the age pre-
diction process. Instead of simply appending the Δage as an additional
feature to the CNN model, we propose a composite parameter taking
into account the effects from both the group and the individual level to
adjust the prediction. Experiments are conducted using two public
neuroimaging datasets (IXI (IXI Dataset) and ADNI (Li et al., 2018)). We
compare our proposed AD-NET with eight existing methods, including
Logistic Regression, Partial Least Square, Gaussian Process Regression,
Support Vector Machine (SVM), and three deep learning models. Our
AD-NET achieved the best AUC of 0.81 and comparable accuracy,
sensitivity, and specificity, which are 0.76, 0.77, and 0.76, respectively.

2. Method

2.1. Architecture and pre-training strategy

The schematic illustration of proposed AD-NET architecture is
shown in Fig. 1. It contains two separate parts: (1) a pre-trained net-
work for feature extraction and age prediction; and (2) a fine-tuned
network to transfer both features and knowledge from age prediction
for MCI converter prediction.

Fig. 1a is the pre-trained network. It takes 3D MR images from
cognitively normal subjects as inputs and predicts age and extracts re-
lated features. The size of the input 3D MRI is 91 × 109 × 91. It
contains repeated 3 blocks, within each block, there are two
(3 × 3 × 3) convolutional layers and one max-pooling layer; each
convolutional layer is followed by a rectified linear unit (ReLU) layer.
The number of feature channels is set to be sixteen for the first block
and is doubled for each subsequent block. The output of the last block is
flattened into one dimension (layer L1 colored with blue in Fig. 1). To
clarify, within this context, the “flatten” means the vectorization of the
multi-dimensional matrix in the last block. This layer is fully connected
to one single output with a linear activation function. A dropout layer
with a rate equals to 0.2 (as in (He et al., 2016; Gao et al., 2019)) is
added to avoid potential overfitting.

The architecture of the fine-tuned model is shown in Fig. 1b. Spe-
cifically, the L1 layer is fully connected (with dropout rate = 0.2) to the
L2 layer, which is connected (with dropout rate = 0.2) to the final
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single output with a sigmoid activation function for MCI conversion
prediction. L2 layer is added to make feature transformation from age
prediction task to produce the initial output of MCI-Converter predic-
tion task (P MCI( )conv ). To serve the knowledge transfer purpose, the
whole pre-trained model is kept (including L1) to predict the B-Age,
Δage is then derived and used to adjust MCI prediction P MCI'( )conv .

For the AD-Net, in the pre-training procedure, the parameters
within 3D blocks, layer L1 and B-Age prediction are trained through the
age prediction task. In this procedure, a dataset of 900 3D MRI images
from cognitively normal subjects was used. In the fine-tuning proce-
dure, the parameters within the pre-trained network were kept fixed,
200 MRI 3D images from MCI patients were used to tune only para-
meters within the L2 layer to transfer features learned by age prediction
task for the MCI-converter prediction task with.

2.2. Aging adjustment in fine-tuning procedure

For subject i, the chronological age (C-Age) yage
i is known as a prior.

Given one output from the AD-NET pre-trained model being biological
age (B-Age) prediction, that is, ̂yage

i , we define Δage
i as:

̂= −y yΔage age
i

age
ii

(1)

Next, with the 3D neuroimage, AD-NET outputs the risk of the pa-
tient i to be an MCI-converter (P MCI( )conv

i ) or a non-converter
(

−
P MCI( )non conv

i ), we have + =
−

P MCI P MCI( ) ( ) 1.conv
i

non conv
i

Under the hypothesis that Δage is strongly correlated to the risk of
developing brain disease (Cole et al., 2017), most MCI subjects’ brain
appears older than that of healthy subjects. Also, MCI Converters’ more
likely have a larger Δage than that of MCI non-converter subjects, so Δage
represents the risk of developing a brain disease. To utilize this idea, we
propose to adjust the probability of an MCI subject i converting to AD
(P MCI( )conv

i ) with Δage
i . The basic idea is, for patient i, if the predicted B-

Age is greater than its C-Age, that is, >Δ 0age
i , this individual has an

increased risk of converting to AD, and vice versa. To model this idea,
let take 0.5 as the midpoint (e.g., 50% risk of conversion), the

conversion risk with respect to the non-conversation risk, in the form of
a ratio, is adjusted as:

=
+

−

∗

− −

P MCI
P MCI

ε
ε

P MCI
P MCI

( )
( )

(0.5 )
(0.5 )

( )
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conv
i

non conv
i

conv
i

non conv
i

'

' (2)

where, = ×ε w ri , = −w max m min m( , (Δ , ))i
m age

i1
2 , m is pre-defined

normalizer to remove outlier impact (e.g., extreme large Δage), r is the
correlation between all Δage and MCI-Converter labels,
and + =

−
P MCI P MCI'( ) '( ) 1conv

i
non conv
i . Here ε is a composite parameter

of two scalars: a global scalar r and a subject-dependent scalar wi.
Global scalar r (r ∈ −[ 1, 1])is derived as the Pearson correlation be-
tween the Δage with the patient's status. A total positive linear correla-
tion exists for r being 1, and total negative linear correlations for r being
−1, no correlation for r being 0. In this study, we would expect to have
r being positive value to describe the general relationship between the
Δage and the patient status on the group bases. Scalar wi is to measure
the normalized deviation level of Δage

i for subject i. wi is proportional to
Δage

i , and it is normalized to the range of −0.5 to 0.5 by a pre-defined
normalizer m.

To better illustrate the effects of wi and r in adjusting P MCI'( )age
i , we

plot P(MCI )conv vs. P (MCI )'
conv under different settings of wi with a

given r (see Fig. 2 with r = 0.8). Here we only discuss the scenario
where r is positive given the cohorts being interested are MCI subjects
(same holds true when r is negative), and wi can be both negative and
positive. From Fig. 2, we observe two properties:

(1) For a positive wi (an individual with increased risk of conversion),
P (MCI )'

conv increases as wi increases. That is, the larger the wi is,
the greater adjustment made from P MCI( )conv to P (MCI )'

conv . For
negative w ,i P MCI'( )conv decreases as wi decreases. That is, the
smaller the wi is, the greater adjustment made from P MCI( )conv to
P (MCI )'

conv . This is consistent with our hypothesis, that is, given wi

is proportional to Δage
i , Δage

i thus wiis positively correlated with the
AD conversion risk.

(2) The adjustment has more effects for subjects with P (MCI )conv falling

Fig. 1. The architecture of the proposed AD-Net. 3D boxes represent input and feature maps. The arrows represent network operations: the black arrow indicates 3D
convolutional operation followed by a rectified linear unit (ReLU) activation function; orange arrow represents max-pooling operations; red arrow represents the
flatten operation; dotted red arrow represents fully connected layers; purple square represents the regression outputs for predicted B-Age; blue square represents
classification outputs for MCI-Converter probability; layers within dotted square form a building block, and there are 3 repeating blocks (block × 3) for feature
extraction before flatten layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in the middle of the distribution (e.g., 0.4–0.6) than that at the two
sides (e.g., 0–0.1 and 0.9–1.0). We believe this is a desirable
property indicating the adjustments can strengthen the differ-
entiation power for the subjects who were not certain on de-
termining the conversion risks.

In the fine-tuning model, the age-related information from the pre-
training is transferred. Together with the features from the pre-training
model, the risk of the subject converting to AD is predicted. A com-
prehensive comparison experiment is conducted and is discussed in the
next sub-sections.

2.3. Data

2.3.1. Dataset I for age prediction
All neuroimaging data used in the study are T1-weighted MRI. The

dataset used in the pre-training procedure for age prediction task in-
cluded 847 cognitively normal subjects. The datasets were obtained
from two sources, and we conducted the pre-processing procedure to
ensure consistency among images from different cohorts. The first data
source was Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(Li et al., 2018), the ages range from 56 to 89. The ADNI is launched
aiming at finding the relationship between progression of mild cogni-
tive impairment (MCI) to early Alzheimer's disease (AD) with bio-
markers, from MRI, PET or clinical and neuropsychological assess-
ments. ADNI enrolled a large cohort of participants (Weiner et al.,
2015) with the majority of participants having PET, MRI as well as
clinical information (including age) available. We selected 256 subjects
who were cognitively normal (CDR = 0) and amyloid negative (based
on florbetapir PET) at the time of MRI scan from ADNI for the pre-
training. In order to increase the size of the training dataset and widen

the age range for robust age prediction, we obtained 581 cognitively
normal subjects from a second data source: Information eXtraction from
Images (IXI) public dataset (IXI Datase). The subjects from the IXI da-
taset were obtained from 3 different hospitals in London: Hammersmith
Hospital, Guy’s Hospital and Institute of Psychiatry. For each subject,
personal information such as sex, height, weight, occupation and age
were included.

2.3.2. Dataset II for MCI-conversion prediction
The dataset used in the fine-tuning procedure for the MCI conver-

sion prediction task was obtained from ADNI. All subjects have the
status as being either converter or non-converter. The dataset included
a total of 297 subjects. These subjects were diagnosed as MCI during the
baseline visit. Among the 297 subjects, 168 were MCI-converters, and
129 subjects were MCI non-converter. The MCI-converter and MCI non-
converter subjects were labeled through the following logic: a subject
was labeled as MCI-converter if the subject was diagnosed as MCI and
converted to AD during a three-year follow-up, and a subject was la-
beled as MCI non-converter if the subject was diagnosed as MCI at both
baseline and the three-year follow-up. Those subjects whose diagnosis
was missing at the three-year follow-up were excluded (Table 1).

2.4. Pre-processing

We used MRIcron (https://www.nitrc.org/projects/mricron) to
convert DICOM files to NIfTI format and conducted rigid registration to
MNI152 (Fonov et al., 2009) space to ensure consistency of position and
orientation. The images were resampled using cubic spline interpola-
tion, to transfer data acquired from different studies into the same voxel
sizes and dimensions (1 mm3, 182 × 218 × 182). Examples of the
different data used in the study are shown in Fig. 3.

Fig. 2. Curves for P MCI( ) 'conv vs. P MCI( )conv under different settings of wi (r = 0.8).

Table 1
Demographic information for subjects in Dataset I and Dataset II.

Dataset I Dataset II

Data Source ADNI and IXI ADNI
Sample Size 847 292
Sex (M/F) 395/452 185/107
Age Mean ± std (years) (Range in years) 56.86 ± 18.34 (18 – 94) 74.84 ± 7.24 (55 – 89)
Apolipoprotein e4 (NC/HT/HM) N/A 129/128/35
Education Mean ± std (Years) (Range) N/A 16 ± 3 (7 – 20)
MMSE Mean ± std (Range) N/A 27.04 ± 1.76 (23 – 30)

NC = Non-carrier; HT = Heterozygote; HM = Homozygote; N/A = Not available.
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2.5. Design of experiments

2.5.1. Experiment I: pre-training and age prediction task
The objective of this experiment I is to develop a pre-training model

for age prediction. In this experiment, 84 (10%) subjects were randomly
selected from Dataset I as a blind testing dataset, the remaining 763
subjects were used as the training dataset. The proposed AD-NET was
trained using mean squared error (MSE) as loss function, Adam
(Kingma and Ba, 2014) was used as the optimizer to solve the problem.
We set the hyper-parameter as: (1) learning rate was 0.01; (2) learning
rate decay equaled to 0.005; (3) training batch was 16; and (4) training
iteration was 200.

2.5.2. Experiment II
We conduct the second experiment using the surrogate marker to

predict MCI conversation risk. 5-fold cross-validation was conducted to
evaluate AD-NET’s performance on the MCI-Converter prediction pro-
blem. The parameters of the deep network obtained from the pre-
training procedure were kept the same for the age prediction. The
parameters of L2 layer were fine-tuned to convert the age prediction
features for the MCI converter prediction problem. The AD-NET was
fine-tuned using cross-entropy as loss function and Adam optimizer
(Kingma and Ba, 2014). Other parameters are selected based on the best
performance: (1) learning rate was 0.01; (2) learning rate decay
equaled to 0.005; (3) training batch was 16; and (4) training iteration
was 50. The area under a receiver operating characteristic curve (AUC),
accuracy (ACC.), sensitivity (SEN.), and specificity (SPE.) were calcu-
lated to measure the prediction power of our model from different as-
pects.

For comparison purpose, we implemented two competing methods,
which were pre-trained through the same procedure as AD-NET:
Transfer learning CNN model (TL-CNN) and Transfer learning CNN
model with Δage as additional features (TL-CNN-Δage). The architecture
of TL-CNN is the same as our-proposed AD-NET, the major difference is
that during the fine-tuning procedure, neither C-Age information nor
predicted B-Age from pre-training procedure was included. This deep
learning architecture is well-studied in a number of medical image
applications such as age prediction (Cole et al., 2017), breast cancer
classification (Gao et al. 2018) and medical imaging synthesis (Li et al.,
2014). In TL-CNN-Δ ,age the Δage for each subject was calculated after the
pre-training procedure. During the fine-tuning procedure, Δage was
simply added as an additional input into the last layer (layer L2 in
Fig. 1). In addition, six existing methods, which used the same ADNI
dataset, from the literature were chosen for comparison. These included
both traditional machine learning models (e.g., logistic regression and
SVM) and deep learning models. Also, we further explore the role of
Δage in the MCI-conversion prediction problem among different age
groups.

3. Results

3.1. Experiment I: pre-training and age prediction task

In experiment I, the proposed model achieved MSE of 187.16 and
Mean Absolute Error (MAE) of 11.17 on the training dataset. The
Pearson Correlation (PC) between C-Age (yage) and predicted B-Age
( ̂yage) was 0.75. On the testing dataset, we had MSE = 196.42,
MAE = 12.28, PC= 0.67. For illustration purposes, we include the plot
of C-Age vs. predicted B-Age for both training dataset (Fig. 4A) and
testing dataset (Fig. 4B). We conclude that after pre-training, the AD-
NET for age prediction can successfully capture the correlation between
raw MRI image and C-Age among the healthy subjects as demonstrated
by the Pearson correlation and the following figure.

We do recognize our model on aging prediction may not be as op-
timum as that from (Cole et al., 2017). We also observe the predicted B-
Age tends to be younger than the C-Age. There is certainly room for
model improvement. With the consistent performance of the model on
the training vs. blind testing dataset, one conclusion we can draw is the
model is robust. Given the focus of this study is to demonstrate the
advantages of surrogate biomarkers from age for MCI converter pre-
diction, we decide to leave the age prediction model improvement as a
future research effort.

Now we fed all subjects in Dataset II into the pre-trained model and
obtained predicted age for each MCI subject. The Δage for each subject
was derived using Eq. (2). We conducted a t-test between the MCI-
converters and MCI non-converters at different age groups (Table 2).
From this group-based study, it is interesting to observe that there is
statistical significance between the MCI converters vs. MCI non-con-
verters under the age group ranges from 55 to 90, 60–90, 65–90 and
even from 70 to 90. For the cohorts aging 75+, the statistical difference
diminishes. We contend the power of this age surrogate biomarker may
be weakened in the older senior population. To get the composite
parameter ε for Eq. (2), we need to derive the Pearson Correlation r. As
discussed above, our model tends to predict younger B-Age comparing
to C-Age, the mean Δage for all subjects in Dataset II is −16.64. Ideally,
we would like the mean Δage close to zero, to utilize positive or negative
Δage (thus the wi) to adjust P MCI( )conv . Therefore, we shifted the
Δagewith −16.64. Fig. 5 shows the distribution of Δage after this ad-
justment. In order to avoid impacts from the extreme values of adjusted
Δage, z-score method is used to identify potential outliers (Ben-Gal,
2005). Any samples outside the ± 2 standard deviation of Δage range
were adjusted to these threshold values to keep model training less
sensitive to those extreme values (i.e., m = 17, that is, adjusted Δagewill
be within ± 17 in our setting). Given the Pearson correlation (PC)
between Δage and MCI-Converter labels is 0.15, we set r = 0.15.

In this first experiment, the accuracy of AD-NET in age prediction
task and the potential of biomarker Δage in differentiating MCI-con-
verter vs. MCI non-converter on the group bases are validated.

Fig. 3. Sample slices from input T1-weighted MRI imaging after the minimal pre-processing procedure. A) Cognitively normal subject from the IXI dataset. B)
Cognitively normal subject from the ADNI dataset. C) MCI Non-Converter subject from the ADNI dataset. D) MCI-Converter subject from the ADNI dataset.
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3.2. Experiment II: MCI-converter prediction task

In this experiment, we incorporated Δage as a surrogate biomarker to
predict MCI conversion risk of each subject. Table 3 summarizes the
performance comparison among the models from the literature and our
proposed model. Four measures, AUC, Accuracy, Sensitivity, and Spe-
cificity are used.

We have four observations from Table 3. First, traditional machine

learning models (e.g., Westman et al., 2012; Young et al., 2013; Ewers
et al., 2012; Liu et al., 2014) require additional information (e.g.,
clinical testing scores, APOE) to achieve comparable performance as
deep learning models on imaging data only. We thus conclude this
demonstrates the advantage of deep learning models, which may better
explore the power of neuroimaging for disease diagnosis. Second, in
handling neuroimaging data alone, (Liu et al., 2014; Shi et al., 2017)
are the combination of a deep model with a machine learning model
where deep learning models are feature extractors. While both have
good specificity (SPE.), the performance on sensitivity (SEN.) is less
than desirable. Here we want to emphasize that sensitivity is of more
clinical importance in this study as the goal is to identify the MCI
converters early for effective interventions. In addition, (Liu et al.,
2014; Shi et al., 2017) would require both MRI and PET for such per-
formance. In using MRI imaging alone, we compare TL-CNN (Cole
et al., 2017), TL-CNN-Δagewith our proposed AD-NET. Our third ob-
servation is with Δage added, TL-CNN-Δage and AD-NET outperforms TL-
CNN in terms of overall performance metrics (ACC. and AUC). This
demonstrates the potential of Δage as a surrogate marker for the MCI
conversion prediction problem. In comparing AD-NET vs. TL-CNN-Δage,
we have 0.76 (ACC.), 0.77 (SEN.), 0.76 (SPE.) for AD-NET and 0.77
(ACC.), 0.80 (SEN.), 0.73 (SPE.) for TL-CNN-Δage. Though it seems TL-
CNN-Δage outperforms AD-NET on sensitivity (0.80 vs. 0.77), t-test
shows there exists no statistically significant difference (p = 0.24). For
AUC, t-test indicates AD-NET significantly outperforms TL-CNN-Δage
(p = 0.02). We conclude AD-NET achieves comparable performances in
terms of accuracy (ACC.), sensitivity (SEN.) and specificity (SPE.) as
that from TL-CNN-Δage and outperformance TL-CNN-Δage in AUC in-
dicating the robustness of AD-NET.

We want to emphasize that in medical research, AUC is considered
as a more consistent metric with better discriminatory power com-
paring to accuracy (Lu et al., 2018). As seen in Table 3, AD-NET has the
highest AUC among all the models.

Table 4 depicts the performance of MCI-conversion prediction
among different age groups and how Δage play a role. As observed, for
the younger group (55–75), the AUC values are 0.74, 0.75 and 0.79 for
TL-CNN, TL-CNN-Δage and AD-NET, respectively. For the older senior
group (75–90), group-based study (Table 2) indicates the diminished
power of Δage as a surrogate age marker to distinguish MCI converter vs.
non-converter. All three deep learning models show the promises in
predicting the conversion risk of each individual subject. In addition,
AD-NET consistently outperforms TL-CNN, TL-CNN-Δage for all subjects

Fig. 4. Plot of chronological age (C-Age) vs. predicted biological age (B-Age): A) training dataset (MSE = 187.16, MAE = 11.17, PC = 0.75), B) testing dataset
(MSE = 196.62, MAE = 12.28, PC-0.67). Red lines are the fitted linear regression, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 2
P-values of t-test on age-gap between MCI-converter vs. non-converter group at
the different age range.

Age Range MCI-converter MCI non-converter p-value

# subjects MeanΔage # subjects MeanΔage

55–90 168 −15.77 129 −17.78 0.021
60–90 162 −16.5 126 −18.1 0.017
65–90 154 −17.03 111 −19.36 0.043
70–90 128 −18.29 101 −19.81 0.049
75–90 88 −20.16 66 −22.49 0.124
80–90 42 −22.39 40 −24.51 0.47
85–90 10 −23.36 14 −25.25 0.331

Bold number represents that p-value is less than 0.05.

Fig. 5. Distribution normalized Δage values for MCI-Converter and MCI Non-
Converter groups.
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(see Table 3) and the separated age group (see Table 4). We conclude
AD-NET, a deep learning model enabled by knowledge transfer has the
potential for AD early detection.

4. Discussion

While AD-NET shows the potentials in MCI conversion risk assess-
ment via the surrogate age biomarker, it has limitations. First, as dis-
cussed in the first experiment, we do recognize our deep learning model
on aging prediction may underperform the model from Cole et al.
(2017). We contend this is because the focus of this study is to de-
monstrate the power of the surrogate age biomarker. This leads to our
imminent future work on improving the performance of the age pre-
diction. One solution is to gather more neuroimages and dedicate ef-
forts to model tuning. We believe with improved performance on age
prediction, MCI-conversion risk assessments will potentially be im-
proved. The second limitation is that the AD-NET in this research fo-
cuses on neuroimaging data only. We plan to incorporate information
such as sex, gene, clinical test scores, etc. from each subject as the
competing methods did, into the model to further improve the perfor-
mance. The third limitation is related to global scalar r, which is pre-
defined based on prior knowledge. We plan to identify the optimal r
during the model training process to explore the impact of the global
scalar on the model performance.”

In this research, we propose a new deep learning model: AD-NET
(Age-adjust neural network). One contribution of AD-NET is to transfer
the knowledge captured in the pre-training, specifically, a surrogate
biomarker Δage (the difference between chronological age and predicted
biological age). The knowledge-based transfer learning not only saves
training resources but also improves prediction accuracy. Our second
contribution lies in a novel age adjust procedure. Instead of simply
adding Δage as an additional feature to the deep model, we introduce a
composite parameter, = ×ε w ri , considering the effects of both the
group (r) and the individual subject (wi) to adjust the prediction (see
equation (2)). Subject-dependent scalar, wi, is smoothed Δage

i by re-
moving outlier impact. It is straightforward to have wi included in the
prediction model. Here we provide more discussions on our investiga-
tion on the r.

Global scalar r is the Pearson correlation between the Δage with the
patient status (MCI converter vs. MCI non-converter) for the cohort, r
∈ −[ 1, 1], r = 1 for a total positive linear correlation, r = -1 for a total
negative linear correlation, r = 0 for no correlation. We conducted
experiments for sensitivity analysis of r for the prediction (see Fig. 6).
When r = 0, we have ε = 0, AD-NET essentially is the same as TL-CNN,
we have AUC = 0.76. When r = 1, we have ε = wi, AUC has the lowest
value as 0.69. Note AD-NET under ε = wi differs from TL-CNN-Δage due
to the use of equation (2) in the prediction adjustment. It is interesting
to observe the best AUC is obtained when r ranges [0.1, 0.3]. The
Pearson correlation r, in this study, 0.15 is one of the best scenarios. We
contend this may be because the prediction deep learning model is
cross-trained on the subject group. The model parameters are set cap-
turing the underlying correlations to the subject group. The empirical
experiment demonstrates that incorporating a Pearson correlation to
the composite parameter helps improve the prediction performance. It
is our intention to conduct theoretical research as immediate next step
to understand the interrelationship among Pearson correlation r, sub-
ject-dependent scalar, wi, composite parameter ε and prediction per-
formance.

5. Conclusions

Our proposed AD-NET extends traditional feature-based transfer
learning with knowledge transfer capability. Surrogate biomarker Δage,
captured through pre-training, is adjusted by global and individual
factors for the fine-tuning stage. We compare AD-NET with 8 classifi-
cation models from literature using the same public neuroimaging

Table 3
Comparison Results on AUC, Accuracy, Sensitivity, and Specificity.

Methods Model Data AUC ACC. SEN. SPE.

Logistic/Cox regression (Ewers et al., 2012) ML Structural MRI + CSF + Neuropsychological testing NA 0.77 0.82 0.73
Orthogonal partial least squares (Westman et al., 2012) ML Structural MRI + CSF 0.76 0.69 0.74 0.63
Gaussian Process (Young et al., 2013) ML Structural MRI + CSF + PET + APOE 0.80 0.74 0.79 0.66
SVM (Liu et al., 2014) ML Structural MRI + PET 0.70 0.68 0.65 0.70
SAE + Logistic regression (Liu et al., 2014) DL/ML Structural MRI + PET NA* 0.54 0.52 0.87
Deep polynomial network + SVM (Shi et al., 2017) DL/ML Structural MRI + PET 0.80 0.79 0.68 0.87
TL-CNN (Cole et al., 2017) DL Structural MRI 0.76 0.73 0.68 0.77
TL-CNN-Δage DL Structural MRI + Age 0.77 0.77 0.80 0.73
AD-NET DL Structural MRI + Age 0.81 0.76 0.77 0.76

*NA: not reported in the literature.

Table 4
AUC performance for TL-CNN, TL-CNN-Δage, AD-NET under for different age
group.

Age range # of subject Methods AUC

55–75 80 MCI converters vs. 63 MCI non-
converters

TL-CNN (Cole et al.,
2017)

0.74

TL-CNN-Δage 0.75
AD-NET 0.79

75–90 88 MCI converters vs. 66 MCI non-
converters

TL-CNN (Cole et al.,
2017)

0.80

TL-CNN-Δage 0.80
AD-NET 0.83

Fig. 6. Sensitivity Experiments on global scalar r on AUC values for MCI con-
verter vs. non-converter prediction.
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dataset. Experimental results show that the proposed AD-NET outper-
forms all the competing models on AUC in predicting the MCI converter
vs. non-converter. While promising, there is room for improvement.
Other than conducting theoretical analysis on the Pearson correlation
as discussed above, we plan to improve the pre-training network for age
prediction. We expect the improved age prediction will help improve
the MCI conversion predictions further which may facilitate future
clinical trial design and improved management of the disease. Another
direction for future work is to explore the model performance on
multiple neuroimaging modalities, e.g., both MRI and PET.
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